Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2379226.v1

ABSTRACT

Background Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Methods Using measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 higher plasma abundances of protein targets and 40 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). Results We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-Cindicating tubular dysfunction and injury. Conclusions Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.


Subject(s)
Kidney Diseases , Renal Tubular Transport, Inborn Errors , Acute Kidney Injury , COVID-19 , Fanconi Syndrome , Cardiomyopathies
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.09.21267548

ABSTRACT

Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using longitudinally collected biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Using longitudinal measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 upregulated and 40 downregulated proteins associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-C indicating tubular dysfunction and injury. Using longitudinal clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.


Subject(s)
Severe Acute Respiratory Syndrome , Kidney Diseases , Renal Tubular Transport, Inborn Errors , Acute Kidney Injury , COVID-19 , Fanconi Syndrome , Cardiomyopathies
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.19.20062117

ABSTRACT

ABSTRACT Background: The coronavirus 2019 (Covid-19) pandemic is a global public health crisis, with over 1.6 million cases and 95,000 deaths worldwide. Data are needed regarding the clinical course of hospitalized patients, particularly in the United States. Methods Demographic, clinical, and outcomes data for patients admitted to five Mount Sinai Health System hospitals with confirmed Covid-19 between February 27 and April 2, 2020 were identified through institutional electronic health records. We conducted a descriptive study of patients who had in-hospital mortality or were discharged alive. Results A total of 2,199 patients with Covid-19 were hospitalized during the study period. As of April 2nd, 1,121 (51%) patients remained hospitalized, and 1,078 (49%) completed their hospital course. Of the latter, the overall mortality was 29%, and 36% required intensive care. The median age was 65 years overall and 75 years in those who died. Pre-existing conditions were present in 65% of those who died and 46% of those discharged. In those who died, the admission median lymphocyte percentage was 11.7%, D-dimer was 2.4 ug/ml, C-reactive protein was 162 mg/L, and procalcitonin was 0.44 ng/mL. In those discharged, the admission median lymphocyte percentage was 16.6%, D-dimer was 0.93 ug/ml, C-reactive protein was 79 mg/L, and procalcitonin was 0.09 ng/mL. Conclusions This is the largest and most diverse case series of hospitalized patients with Covid-19 in the United States to date. Requirement of intensive care and mortality were high. Patients who died typically had pre-existing conditions and severe perturbations in inflammatory markers.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL